

MURI IPD Introduction and Project Overview

David L. Hall, Ph.D.
Associate Director
Applied Research Laboratory
The Pennsylvania State University

14 August 2000

ONR GRANT NO.: N00014-95-1-0461

Form SF298 Citation Data

Report Date ("DD MON YYYY") 14062001	Report Type Final	Dates Covered (from to) ("DD MON YYYY") 01031995 30092000
Title and Subtitle MURI Integrated Predictive Diagnostics (IPD)		Contract or Grant Number N00014-95-1-0461
		Program Element Number URI
Authors Hall, David L.; Byington, Carl S.		Project Number
		Task Number
		Work Unit Number
Performing Organization Name(s) and Address(es) THE PENNSYLVANIA STATE UNIVERSITY 110 TECHNOLOGY CENTER BUILDING UNIVERSITY PARK, PA 16802-7000		Performing Organization Number(s)
Sponsoring/Monitoring Agency Name(s) and		Monitoring Agency Acronym
Address(es) Office of Naval Research		Monitoring Agency Report Number(s)

Approved for public release, distribution unlimited

Supplementary Notes

Prepared in cooperation with Rensselaer Polytechnic Institute and Tennessee State University

Abstract

Developed a formalization of CBM technology and engineering. Established test beds, tools, and processes for CBM. Created new methodsfor observing, detecting, and characterizing mechanical failures. new architectures and methods for automated reasoning. Developed new mathematical formulations and models for failure prediction. Demonstrated viability of hierarchical machinery prognostics. Establishedenabling technology for CBM transition and implementation using a open system architecture. S&T base of data, models, tools, and trainignmaterial available to CBM community.

Subject Terms

condition-based maintenance (CBM); Multidisciplinary University Research Initiative (MURI); Integrated Preditive Diagnostics

Document Classification	Classification of SF298
unclassified	unclassified

Classification of Abstract unclassified	Limitation of Abstract unlimited
Number of Pages 27	

Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER **5b. GRANT NUMBER** 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) **5d. PROJECT NUMBER** 5e. TASK NUMBER **5f. WORK UNIT NUMBER** 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT **NUMBER** 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 11. SPONSOR/MONITOR'S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT

17. LIMITATION

OF ABSTRACT

18. NUMBER

code)

OF PAGES

15. SUBJECT TERMS

a. REPORT

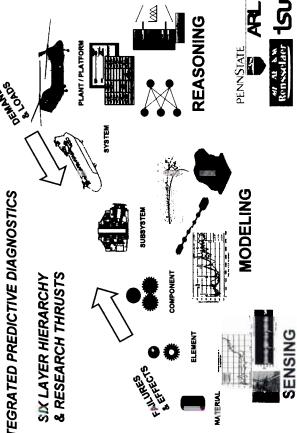
16. SECURITY CLASSIFICATION OF:

b. ABSTRACT

c. THIS PAGE

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18


19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area

for Integrated Predictive Diagnostics Multidisciplinary University Research Initiative (MURI)

INTEGRATED PREDICTIVE DIAGNOSTICS

Scientific/Technical Approach

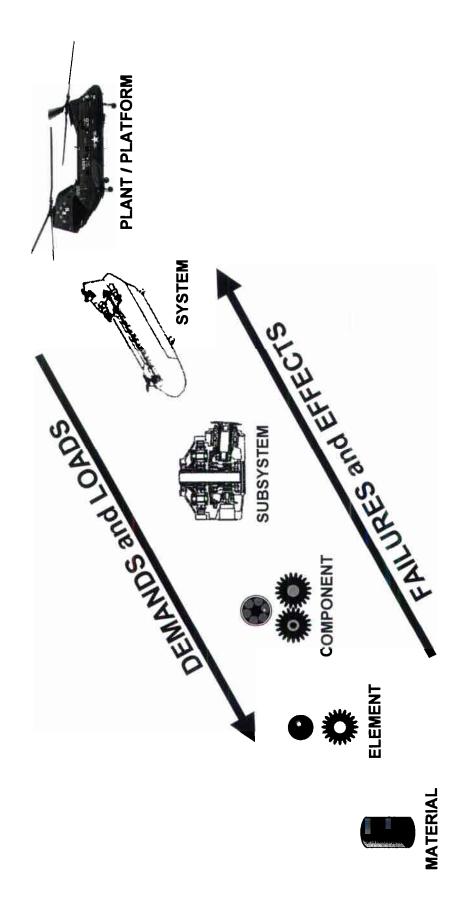
- Three research areas: sensing, modeling, reasoning
- Vertically integrated facilities and models to link materials-level failure phenomena to platformlevel effects
- Data collection and demonstration on MDTB
- Workshops and data archival for CBM community
- Research supports both helicopter and shipboardbased programs

March 1995 – August 2000

MURI Objective

reasoning. Demonstrate end-to-end processing for CBM on mechanical diagnostics test bed (MDTB). consequence-driven sensing, modeling, and Mission-oriented predictive diagnostics for mechanical systems with emphasis on

Enhanced DoD Capabilities


Reduced lifecycle maintenance costs for weapons increased reliability and improved human safety. platforms with enhanced mission effectiveness,

Accomplishments

- Test beds to collect calibrated fault transitional
- Smart, self-calibrating sensors
- Advanced sensing methods: torsional, magnetic
- Advanced signal processing and data fusion
- Nonlinear prognostics to track failure evolution
- Hierarchical models for MDTB
- Advanced hybrid automated reasoning techniques
- agents for helicopter aircrew decision support Collaboration with CHI Systems: intelligent

for Integrated Predictive Diagnostics Six-Layer Hierarchy

Condition-Based Maintenance Challenges for

Sensors

- Sensor selection and location
- Size and cost
- Robustness and self-calibration
- Smart in-situ processing

Signal processing/data fusion

- Detection of rare events
- Poor signal-to-noise ratio
- Signal characterization and feature selection
- Fusion of non-commensurate sensors
- Archival quality data sets

Intelligent reasoning and control

- Combined implicit/explicit reasoning
- Hierarchical reasoning
- Incorporating negative information
- Uncertainty and knowledge representation
- Incorporation of operational context

Micro-mechanical modeling

- Incipient fault models
- Fault progression models
- Impact of environmental factors

Dynamic modeling and prognostics

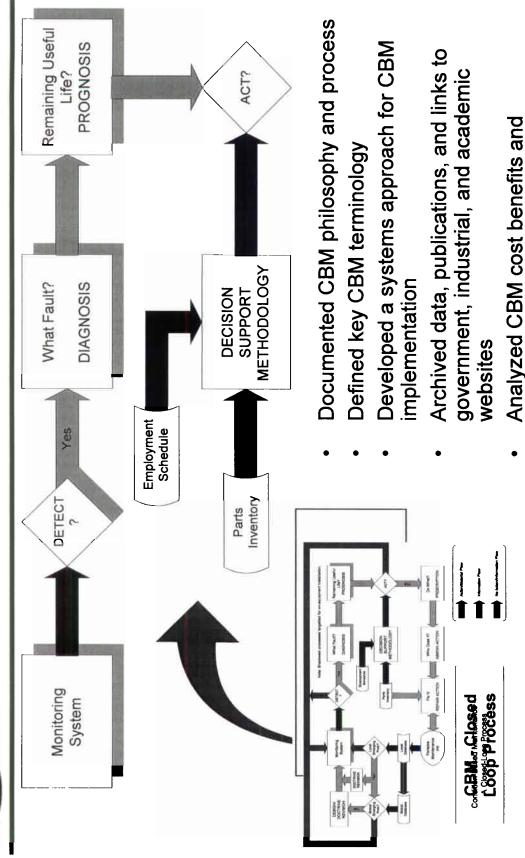
- Link of micro failure to macro observables
- Nonlinear dynamics
- Intrinsic limits of predictability
- Life cycle modeling

What the MURI Team Proposed...

Micro-Mechanical Failure Models	 Wear progression and failure models Fatigue failure processes/progression models Role of hydrogen embrittlement in high strength steels Vertically integrated test facility and data sets
Dynamic Modeling	 Reliable prediction of damage state from macro-observables Diagnostics based on dynamical responses Prediction of remaining useful life
Systems	 New architecture for smart self-calibrating sensors New noncontact ultrasonic sensors Nanofabricated smart sensors New adaptive noise canceling sensors
Signal Processing and Multisensor Data Fusion	 New wideband, coherent signal processing techniques Advance pattern recognition methods for recognizing failure events A general multisensor data fusion processor New active/passive sensor processing approach
Intelligent Reasoning and Control	 New knowledge representation/inference methods Linked explicit/implicit approximate reasoning Hierarchical architecture for intelligent prognostics Life-extending control approach

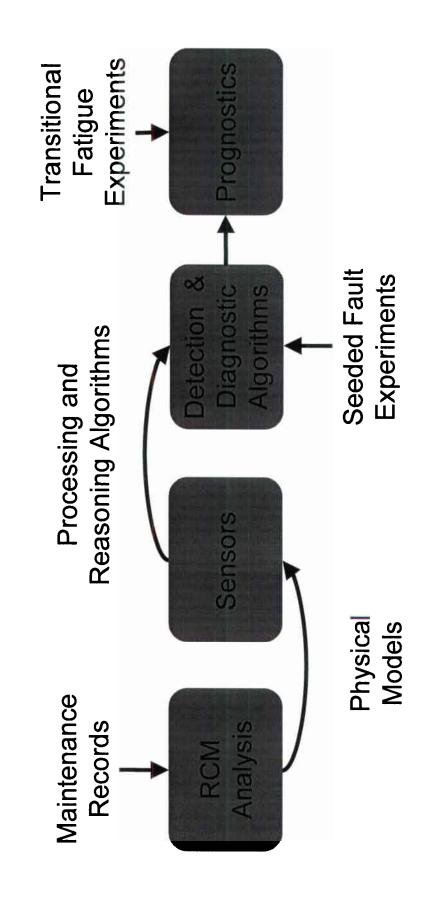
Multidisciplinary University Research Initiative for Integrated Predictive Diagnostics

Final Program Review - August 14, 2000 Penn State • Rensselaer Polytechnic • Tennessee State

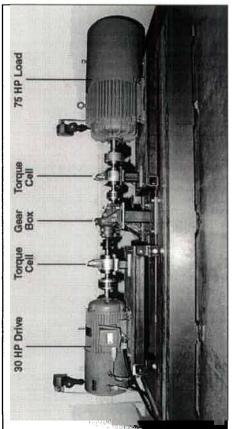


What We Achieved

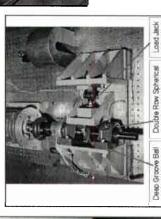
- A formalization of the CBM problem
- A suite of test beds and toolkits to analyze transitional failure data
- **CBM system advances**
- Implementation of advanced sensors and new sensing techniques
- Robust signal processing & feature extraction methods
- Fusion methods for multisensor CBM data
- Hierarchical models for mechanical components and subsystems
- Prognostic models at the observation and state-vector level
- New architectures and hybrid methods for automated reasoning
- Education of multiple undergraduate and graduate students
- An S&T base of training materials, papers, and data
 - Technology transition to multiple programs


Formalization of the CBM Problem

technology tradeoffs



Role of Transitional Data



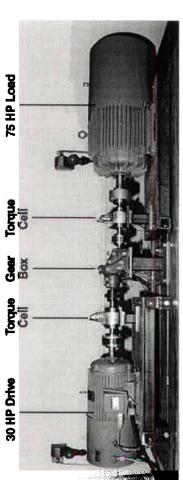
Mechanical Diagnostic Test Bed (MDTB)


Bearing Test Rig

Lubrication Test Bed

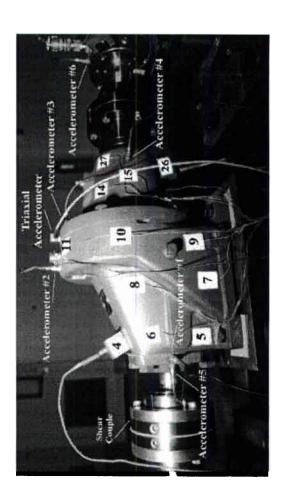
New in 2000: • Diesel-Enhanced MDTB

Shaft Torsional Test Rig


Battery Diagnostics Test Bed

Electric Generator Test Rig

Mechanical Diagnostics Test Bed



Data Acquisition and Management

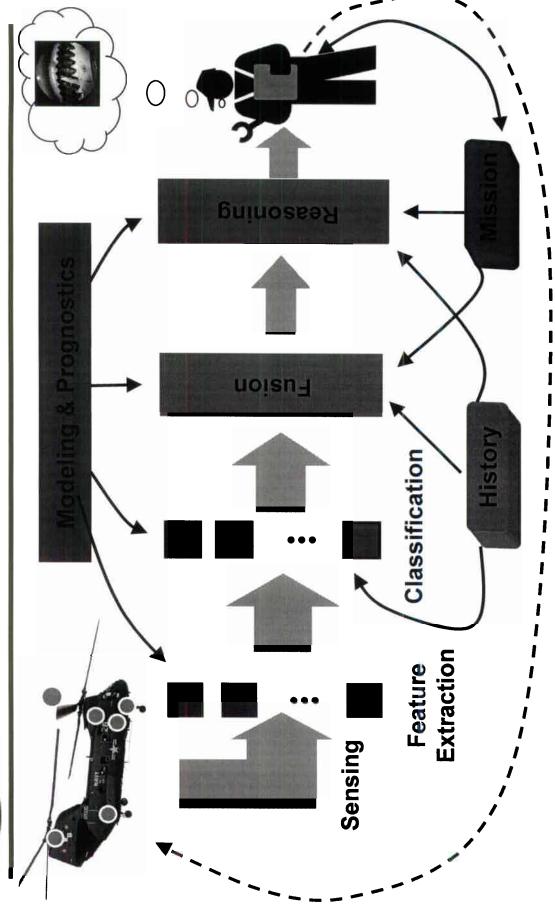
- Standard process for data acquisition management, archival and distribution
- Standard approach for CBM data acquisition, calibration, documentation, and storage

Instrumentation

- Vibration (accelerometer, laser vibrometer)
- Acoustic emission events
- Strain gauges
- Multi-point temperatures
- Oil quality and sampling (dielectric and debris)
- Multiple torque & speed
- Motor monitoring
- Shaft encoder

Analysis Facilities and Tools

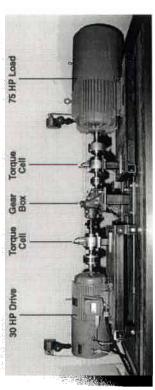
- **FMECA/Pareto Analysis**
- Failure/Evaluation Testing
- Data Acquisition/Archival
- Vibration Analysis
- Oil Analysis and Testing
- Power Systems Modeling
- Feature/Decision Fusion
- Diag/Prognostic Algorithms


Blackboard and Reasoning

CBM Cost Benefit Analysis

- RCM Analyst, ItemSoft RAMS
- MDTB, Diesel, Battery and Fluid System
- Labview, CVI, DAMAD
- Torsional, MDTB, Turbine, Bearing
- LASERNET, MDTB, LSTB ANSYS, TELSS, Simulink
 - Data Fusion Toolkit
- Matlab, C, C++
- iGEN, Neural Net & Fuzzy Logic Tool
- ◆ ItemSoft RAMS, Price

CBM Processing Flow



Multidisciplinary University Research Initiative for Integrated Predictive Diagnostics

Final Program Review - August 14, 2000 Penn State • Rensselaer Polytechnic • Tennessee State

Advanced Sensing

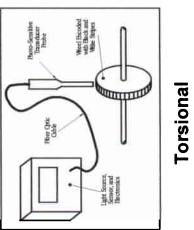
Mechanical Diagnostic Test Bed (MDTB)

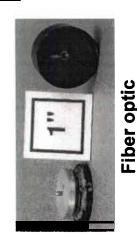
Self-calibrating

Nanoscale

Designed and fabricated a nano-scale MEMS sensor

Used magnetic sensors in novel manner


vibration sensing systems Developed new torsional


Signal Generator

Data

Calibrated sensors on multiple test rigs

Established benchmark data sets

Difference **Potential** (EPD)

Electric

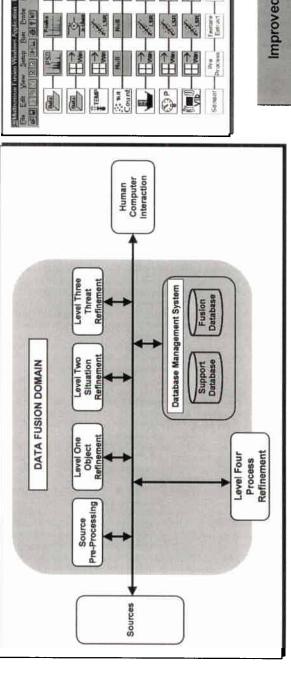
Multidisciplinary University Research Initiative for Integrated Predictive Diagnostics

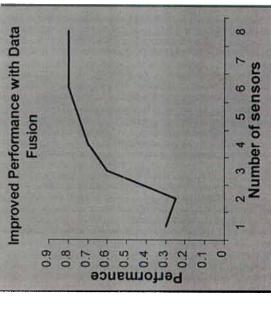
Signal Processing and Characterization

- **Developed CBM Features Toolbox**
- based, and time-frequency algorithms Implemented time-based, frequency-

Original Signal

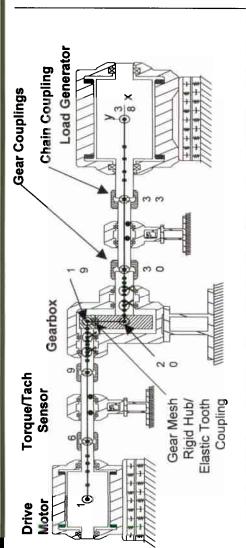
Filter

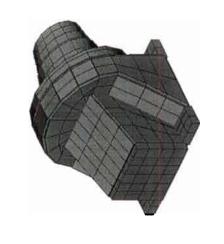

Frequency


Interstitial FOM

- Identified robust features for fault characterization
- Calibrated CBM algorithms

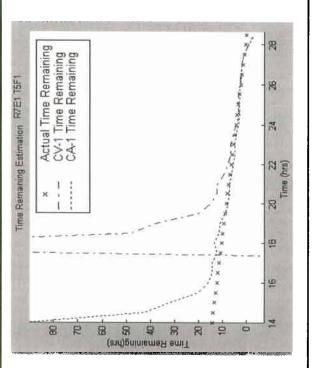
Multisensor Data Fusion



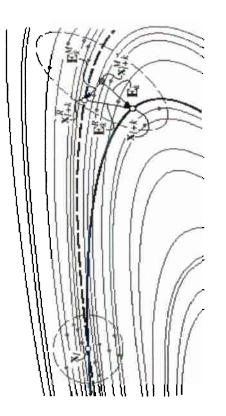


- Leveraged JDL data fusion process model
- Developed Multisensor Fusion Toolkit
- Demonstrated feature- and decisionlevel algorithms
- Derived critic adjudicated voting
- Quantified the value of data fusion

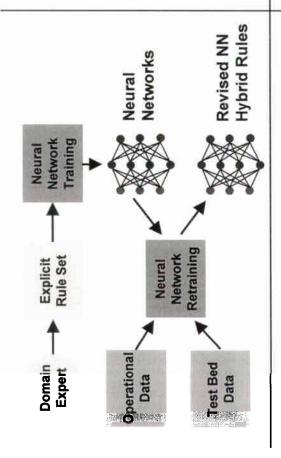
Mechanical System Modeling

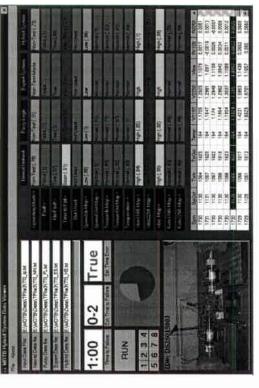


- Developed multi-level models for a wide variety of systems
- Models for MDTB subsystems and **Created extensive Finite Element** systems
- Developed models for load and environmental effects
- Calibrated models against test bed data
- Developed a model to predict macroobservables due to mechanical flaws

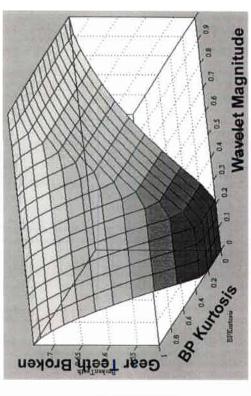


Prognostic Modeling




- New mathematical formalism for state-space prognostics
- Formulation of observation space prognostics and tracking
- Comparison and validation against multiple test stand data sets
- Limited materials-level prediction models

Automated Reasoning

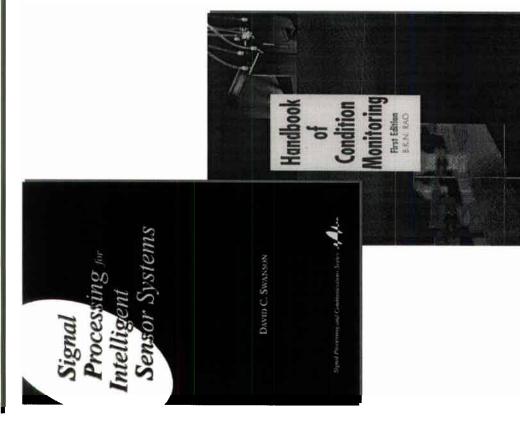


- Performed technology assessment of automated reasoning
- Developed new architecture for automated reasoning

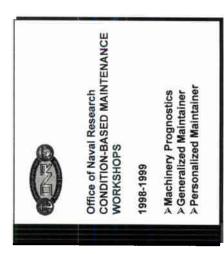
Compared performance of

alternative reasoning techniques
Developed new techniques for
hybrid reasoning

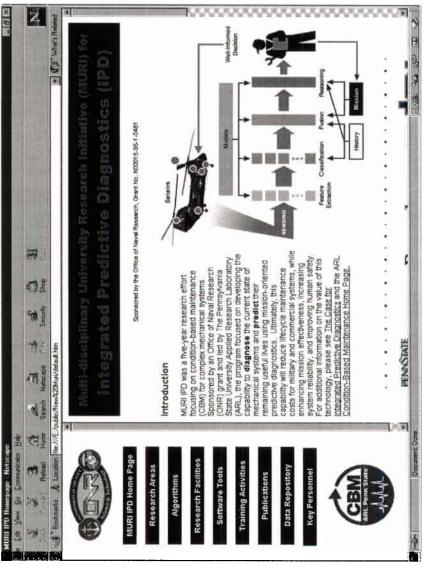
Educational Activities



- Multi-university partnership
- Undergraduate, graduate and post-doctoral support (100+ students)
- Workshops, seminars, multiday tutorials
 - Online information and data
- Papers (including 14 theses)

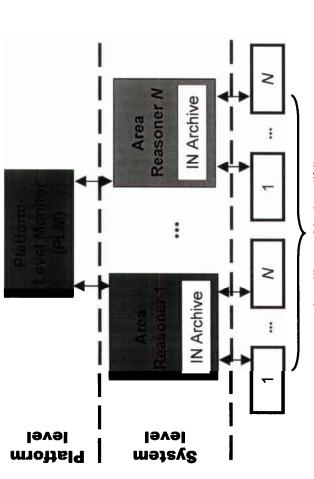


Publications and Presentations



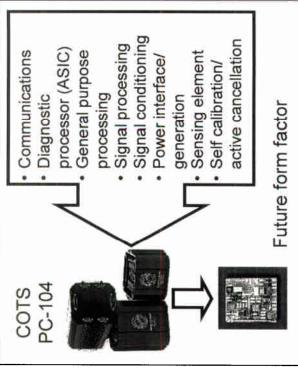
- Books (3)
- Book chapters (3)
- Refereed publications (20+)
- Conference publications (80+)
- Conference presentations (50+)
- Tutorials and workshops (8)

Online MURI Resources



- Progress in research areas (sensing, modeling, reasoning)
- Information on algorithms
- Summary of testing facilities and software tools
- Publications and other resources
- Key personnel
- Data samples and forms to request MDTB and Westland Helicopter data

http://www.cbm.arl.psu.edu/IPD/Welcome.html


Evolving CBM Architecture

Intelligent Nodes (IN)

MURI Contributions

- DSP/data fusion algorithms
- Test beds for architecture evaluation
- New sensor concepts
- Automated reasoning for system and platform levels
- Prognostic modeling concepts for all levels

Evolution to an Open System Architecture (OSA)

- Generalized formalism led to ACI three-level architecture
- Fusion and reasoning models define functionality in OSA CBM
- Smart, self-calibrating sensors provide foundation for net-centric CBM/PHM

Program Inter-relationships and Transition Paths

 LPD-17 Dual Use Program -Impact Technologies -GE Aircraft Engines · Commercial Initiatives: Implementation Lockheed Martin **Transition Programs** ACI Demonstration Gas Turbine Engine Transition Plan Joint Strike Fighter Oceana Sensor Technologies Caterpillar and Platforms - Boeing · Future CV (bending) · AAAV Prototype Development Demonstration Research & Development Technical Evaluation & Testing Technology Insertion OSA CBM Open Systems Architecture for CBM crew by Virtual Presence RSVP Reduced Ships-ACI Accelerated Capabilities Initiative for Machinery Prognostics and Diagnostics Dual Application ICHMTM Research Initiative: Integrated Predictive (Augmented via DURIPs) ICHM DUAP **MURI IPD** Multidisciplinary University Development of Industry Standards Product Concept Development Diagnostics Concepts

Multidisciplinary University Research Initiative for Integrated Predictive Diagnostics

Final Program Review – August 14, 2000 Penn State • Rensselaer Polytechnic • Tennessee State

Continuing Challenges

- Sensing Challenges
- Well-calibrated transitional data for CBM
- Autonomous intelligent multisensor systems
- Self-powered, self-calibrating sensors with wireless communications
- Modeling Challenges
- Physics-based models for failure phenomena and progression
- Accurate prediction of macro-scale observables from micro-scale phenomena
- General theory of uncertainty and failure prediction
- Automated feature extraction/selection for processing sensor data
- Integration of non-commensurate sensor data
- **Prognostics**
- Scaling laboratory-based models to fielded systems and platforms
- Continued evolution of prognostic theory and applications

(continued)

Continuing Challenges (cont'd)

- Automated Reasoning Challenges
- Cognitive-based automated reasoning methods to mimic capability of expert mechanics
- Hierarchical hybrid methods incorporating physics-based models
- Integration of explicit and implicit knowledge and negative information
- MOPs and MOEs for data fusion and reasoning
- System Control and Resource Utilization Challenges
- Tasking and optimal use of 10^N sensors
- Adaptive context-based sensing
- Feedback and control of load conditions to extend life span
- Evolution of CBM to asset readiness for intelligent mission planning
- Spanning the dimension from physics of failure to system capability and platform readiness
- Translating mission profile demands to system loads and failure prognostics

Summary of Achievements

- Developed a formalization of CBM technology and engineering
- Established test beds, tools, and processes for CBM
- Created new methods for observing, detecting, and characterizing mechanical failures
- Developed new architectures and methods for automated reasoning
- Developed new mathematical formulations and models for failure prediction
- Demonstrated viability of hierarchical machinery prognostics
- Established enabling technology for CBM transition and implementation using an open system architecture
- S&T base of data, models, tools and training material available to CBM community